- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Universities of York, England, and Louvain, Belgium.
- Martinez-Ripoll, M. & Cano, F. H. (1975). PESOS. Instituto Rocasolano CSIC, Madrid, Spain.

Nardelli, M. (1983). Comput. Chem. 7, 95-98.

- Rogers, R. D. & Bond, A. H. (1992). Acta Cryst. C48, 1782-1785.
- Stewart, J. M. (1976). Editor. The XRAY System of Crystallographic Programs. Version of 1980. Technical Report TR-446. Computer Science Center, University of Maryland, College Park, Maryland, USA.
- Tiekink, E. R. T., Hundal, M. S., Hundal, G., Kapoor, P. & Poonia, N. S. (1990). Z. Kristallogr. 192, 103–109.
- Ward, D. L., Popov, A. I. & Poonia, N. S. (1984). Acta Cryst. C40, 1183–1186.

Acta Cryst. (1996). C52, 789-792

## Bis(triethanolamine)calcium 3,5-Dinitrobenzoate

Geeta Hundal (née Sood), <sup>a</sup>† Martin Martinez-Ripoll, <sup>a</sup> Maninder Singh Hundal<sup>b</sup> and Narinder Singh Poonia<sup>c</sup>

<sup>a</sup>Departamento de Cristalografia, Instituto de Quimica Fisica, Rocasolano, CSIC Serrano 119, E-28006 Madrid, Spain, <sup>b</sup>Department of Chemistry, Guru Nanak Dev University, Amritsar 143 005, India, and <sup>c</sup>Department of Chemistry, Devi Ahilya University, Indore 452 001, India. E-mail: xgeeta@roca.csic.es

(Received 15 June 1995; accepted 16 October 1995)

#### Abstract

In the title complex,  $[Ca(C_6H_{15}NO_3)_2](C_7H_3N_2O_6)_2$ , the  $Ca^{2+}$  ion is sandwiched between two triethanolamine ligands (IUPAC nomenclature: 2,2',2"-nitrilotriethanol), each of them coordinating through all four potential donor sites. The coordination polyhedron is distorted cubic. The 3,5-dinitrobenzoate counteranions do not interact directly with the cation but are hydrogen bonded to the hydroxy groups of the triethanolamine ligands.

## Comment

In the complexes of s-block metal ions having a general formula M(anion)(ligand)(solvent), where the ligand is a neutral molecule having O or N as donor atom, the structure depends on whether or not the ligand has a polar or polarizable H atom (Poonia & Bajaj, 1979; Fenton, 1987). Important ligands in the

latter category are 1,10-phenanthroline, 2,2'-bipyridine, etc. These ligands only interact with the cation and do not interact with the counteranion through hydrogen bonding. The neutral ligands possessing polar or polarizable H atoms include hydroxy compounds and amines. Important examples include glycols, ethylenediamine, triethanolamine, etc. These ligands usually interact with the cation and are hydrogen bonded with the counteranion through polar H atoms. In the complexes of such ligands with s-block metals, the counteranion can interact with the complexed cation or can be excluded from the coordination sphere around the cation to give complexes where the counteranion is not directly interacting with the cation. The counteranion of the title compound is 3,5-dinitrobenzoate (DNB), which exhibits a wide range of coordination modes. In Ca<sup>2+</sup> complexes. DNB has been found to act as a bridging bidentate, chelating bidentate and bridging tridentate ligand (Hundal, Martinez-Ripoll, Hundal & Poonia, 1995; Cradwick & Poonia, 1977; Kanters, Harder & Poonia, 1987). The structure of the title compound. (I), has been solved to determine the behaviour of the neutral ligand triethanolamine (TEA) and to determine the nature of the interaction of the counteranion 3,5dinitrobenzoate with the cation and to compare the behaviour of the counteranion with that of 2,4-dinitrophenolate (DNP). Thermogravimetric analysis of the compound revealed that the solvent was not present in the final crystalline phase.



The crystal structure is shown in Fig. 1. The Ca atom is eightfold coordinated by two triethanolamine ligands. The TEA ligands use all four potential donor atoms, i.e. three O and one N atom. The coordination around Ca can be classified as distorted cubic, as can be seen from Fig. 2. The Ca-O distances are in the range 2.393 (7)-2.454 (8) Å and the Ca-N distances are 2.708 (5) and 2.730 (5) Å. The Ca-N bond distances are slightly longer than that observed in Ca(TEA)(DNP)<sub>2</sub> [2.600 (7) Å; Hundal *et al.*, 1995]. In the other complexes of TEA with NaI (Voegele, Fischer & Weiss, 1974a), Sr(nitrate)<sub>2</sub> (Voegele, Fischer & Weiss, 1974b), Ba(acetate)<sub>2</sub> (Voegele, Thierry & Weiss, 1974), Ba(DNP)<sub>2</sub> (Kanters, Smeets, Venkatasubramanian & Poonia, 1984), and Ca(DNP)<sub>2</sub> (Hundal et al., 1995), the TEA ligand normally has an extended conformation, due to the presence of at least three almost planar C-N-C-C fragments, and a gauche conformation of the terminal OH group with respect to the

<sup>†</sup> Permanent address: Department of Chemistry, Guru Nanak Dev University, Amritsar 143 005, India.

C—N bonds. In the present complex, one TEA ligand [referred to as TEA(C) in the text] fulfills the above conditions (torsion angles are in the range given in the literature) and is considered to have an extended conformation, but the second [with all atoms having letters D in the label, referred to as TEA(D)] deviates significantly from this. The two ligands also differ from each other with respect to their bond distances. Bond distances in TEA(D) are in general shorter than those found in TEA(C). Mean C—O and C—N distances are 1.438 (9) and 1.476 (12) Å, respectively, in TEA(C) and 1.396 (10) and 1.416 (17) Å, respectively, in TEA(D).



Fig. 1. ORTEP (Johnson, 1965) drawing of the final model showing the atomic labelling and hydrogen-bonding scheme. Non-H atoms are shown with displacement ellipsoids drawn at the 30% probability level. H-atom labels have been omitted for clarity.



Fig. 2. The distorted cubic coordination around the  $Ca^{2+}$  ion.

Bond lengths and bond angles of the DNB counteranions are normal and comparable except for the carboxylate and O5—N2—O6 groups in both. Bond distances of the carboxylate group in DNB(B) are smaller than in DNB(A) and the reverse is true for the O5—N2—

O6 group. This might be due to the fact that the ---COO group of DNB(A) and O5-N2-O6 of DNB(B)are involved in hydrogen bonding, thus giving relatively longer bond lengths. Substitution does not influence the planarity of the phenyl rings, the average deviations being 0.009 (8) and 0.005 (8) Å for DNB(A) and DNB(B), respectively. In DNB(A) the carboxylate and the nitro groups attached at positions 3 and 5 form dihedral angles of 12.8 (6), 174.3 (4) and 5.2 (8)°, respectively, with the phenyl ring, while these angles are 16.9 (4), 176.0 (9) and  $11.4(6)^{\circ}$  in DNB(B). All the hydroxy H atoms of TEA are involved in extensive inter- and intramolecular hydrogen bonding (Table 3) with the DNB anions. O7C and O8D act as hydrogen-bond donors towards O2A and O1A of the carboxylate group of DNB(A) giving rise to two intramolecular hydrogen bonds. OlA also accepts an H atom from O9D. Both O8C and O9C donate H atoms to O6B. O7D forms another hydrogen bond with O5B. The hydrogen bonding decreases the nucleophilic character of the anion and, as a result, the tendency of the anion to interact with Ca<sup>2+</sup> is decreased and the anion is not involved in metal coordination. On the other hand, as was observed in our previous studies on Ca(TEA)(2,4-dinitrophenolate), an ion-paired complex is formed (Hundal et al., 1995) because the interaction between the highly nucleophilic chelating anion and the Ca2+ cation is very strong and hydrogen bonding is not strong enough to separate the cation from the anion. On the basis of this trend, we expect that in the Ca(picrate)<sub>2</sub>(TEA)<sub>2</sub> system the cation would not coordinate with the anion because the picrate anion is more resonance stabilized and less nucleophilic than 2,4dinitrophenolate and 3,5-dinitrobenzoate.

### **Experimental**

The title compound was prepared by adding triethanolamine to a solution of Ca(3,5-dinitrobenzoate) in 1:1 ratio, and crystallizing by slow evaporation. The density  $D_m$  was measured by flotation.

#### Crystal data

 $[Ca(C_{6}H_{15}NO_{3})_{2}]-(C_{7}H_{3}N_{2}O_{6})_{2}$   $M_{r} = 760.68$ Triclinic  $P\overline{1}$  a = 7.2894 (9) Å b = 14.221 (4) Å c = 17.324 (5) Å  $\alpha = 106.49 (3)^{\circ}$   $\beta = 99.47 (2)^{\circ}$   $\gamma = 93.37 (1)^{\circ}$   $V = 1687.9 (8) Å^{3}$  Z = 2  $D_{x} = 1.497 \text{ Mg m}^{-3}$  $D_{m} = 1.487 \text{ Mg m}^{-3}$  Mo  $K\alpha$  radiation  $\lambda = 0.71069$  Å Cell parameters from 41 reflections  $\theta = 8-20^{\circ}$   $\mu = 0.263$  mm<sup>-1</sup> T = 293 K Prism  $0.30 \times 0.25 \times 0.20$  mm Light yellow

| Data collection              |                          |                                        |                                                           |                      | C11 <i>C</i>                           | 0.2188 (13)               | -0.2690              | (7) 0.1755 (7)                                                            | 0.065 (5)            |
|------------------------------|--------------------------|----------------------------------------|-----------------------------------------------------------|----------------------|----------------------------------------|---------------------------|----------------------|---------------------------------------------------------------------------|----------------------|
| Philips PW1100 diffractom-   |                          | actom- 1                               | $R_{int} = 0.0269$                                        |                      | C12C                                   | -0.1776(12)               | -0.2231              | $\begin{array}{ccc} (7) & 0.0994 \ (5) \\ (8) & 0.1207 \ (6) \end{array}$ | 0.059(4)             |
| eter                         |                          | ť                                      | $\theta_{\rm max} = 25.03^{\circ}$                        |                      | 07D                                    | -0.2836(11)<br>0.1123(11) | -0.1375<br>-0.1066   | (8) 0.1297 (6) (5) 0.3389 (4)                                             | 0.065(5)<br>0.088(4) |
| $\omega$ scans               |                          | ŀ                                      | $h = -8 \rightarrow 8$                                    |                      | O8D                                    | 0.4665 (7)                | 0.0372               | (4) ().2554 (3)                                                           | 0.000(4)<br>0.051(3) |
| Absorption correction:       |                          |                                        | $k = -16 \rightarrow 16$                                  |                      | 09 <i>D</i>                            | 0.0180 (7)                | 0.1226               | (4) 0.2548 (4)                                                            | 0.056 (3)            |
| $\psi$ scan (North. Phillips |                          |                                        | $l = 0 \rightarrow 20$                                    |                      | N3D<br>CSD                             | 0.2670 (8)                | 0.0890               | (4) 0.3819 (4)                                                            | 0.039 (3)            |
| & Ma                         | athews, 1968)            | . 2                                    | 2 standard reflections                                    |                      | C9D                                    | 0.241(2)<br>0.1127(16)    | -0.0392              | (10) 0.4411(7)<br>(7) 0.4155(6)                                           | 0.117 (8)            |
| $T_{\min}$ :                 | $= 0.945, T_{max}$       | =                                      | frequency: 90 min                                         |                      | CIOD                                   | 0.4580 (16)               | 0.1169               | (11) $0.3911(7)$                                                          | 0.139 (9)            |
| 1.000                        | )                        |                                        | intensity decay: 1%                                       |                      | C11D                                   | 0.5671 (12)               | 0.0757               | (8) 0.3375 (6)                                                            | 0.070 (5)            |
| 6052 m                       | easured reflect          | tions                                  | ,                                                         |                      | C12D                                   | 0.166 (3)                 | 0.1726               | (12) 0.3908 (8)                                                           | 0.189 (11)           |
| 5964 in                      | dependent refl           | ections                                |                                                           |                      | C13D                                   | 0.0/18 (13)               | 0.2001               | (6) 0.3291 (6)                                                            | 0.068 (5)            |
| 3828 ot                      | oserved reflect          | ions                                   |                                                           |                      | Ta                                     | able 2. Sele              | cted geom            | etric parameters                                                          | (Å.°)                |
| [F >                         | $2\sigma(F)$ ]           |                                        |                                                           |                      | Ca-08C                                 |                           | 2 393 (7)            | 068N28                                                                    | 1 263 (11)           |
|                              |                          |                                        |                                                           |                      | Ca—07C                                 |                           | 2.400 (6)            | N1B-C4B                                                                   | 1.487 (14)           |
| Refinem                      | ient                     |                                        |                                                           |                      | Ca—O8D                                 |                           | 2.409 (5)            | N2B—C6B                                                                   | 1.551 (13)           |
| Refinem                      | nent on F                | (                                      | $\Lambda/\sigma$ )max = 0.074                             | L                    | Ca09C                                  |                           | 2.424 (6)            | C1B - C2B                                                                 | 1.454 (13)           |
| R = 0.0                      | 62                       |                                        | $\Delta \rho_{max} = 1.301 \text{ e} \text{ Å}^{-3}$      |                      | Ca09D                                  |                           | 2.424 (6)            | $C_{2B}$ $C_{3B}$ $C_{7B}$                                                | 1.378 (14)           |
| wR = 0.002                   |                          |                                        | $\Delta \rho_{\rm min} = -0.915 \text{ e} \text{ Å}^{-3}$ |                      | Ca-N3C                                 |                           | 2.730 (5)            | C3B-C4B                                                                   | 1.350 (14)           |
| S = 1.11                     | 15                       | -<br>F                                 | tinction correction: none                                 |                      | Ca—N3D                                 |                           | 2.708 (5)            | C4B—C5B                                                                   | 1.401 (14)           |
| 3828 re                      | flections                | -                                      | Atomic scattering                                         | factors              | 01A-C1/                                | 4                         | 1.255 (11)           | C5B—C6B                                                                   | 1.391 (12)           |
| 460 par                      | ameters                  |                                        | from Internatio                                           | nal Tables           | $O_{2A} = C_{1A}$<br>$O_{3A} = N_{1A}$ | 4                         | 1.231 (9)            | 07C - CB                                                                  | 1.387 (12)           |
| H-atom                       | parameters no            | ot                                     | for X-ray Crys                                            | tallography          | 04A—N1                                 | 4                         | 1.203 (13)           | 08CC11C                                                                   | 1.421 (10)           |
| refine                       | ed                       |                                        | (1974  Vol IV)                                            |                      | O5A—N2/                                | 4                         | 1.213 (14)           | 09C-C13C                                                                  | 1.459 (11)           |
| Weighti                      | ng scheme: Pl            | ESOS                                   | (1),                                                      |                      | O6A-N2/                                | 4                         | 1.206 (13)           | N3C-C8C                                                                   | 1.470 (12)           |
| (Mart                        | tinez-Ripoll &           | Cano,                                  |                                                           |                      | N1A-C4/                                | 1                         | 1.490 (11)           | N3C = C10C<br>N3C = C12C                                                  | 1.476 (12)           |
| 1975)                        | )                        |                                        |                                                           |                      | CIA-C2A                                | 1                         | 1.526 (12)           | C8CC9C                                                                    | 1.486 (12)           |
|                              |                          |                                        |                                                           |                      | C2A—C3A                                | ١                         | 1.376 (10)           | C10C—C11C                                                                 | 1.468 (16)           |
| Table                        | 1. Fractional            | atomic co                              | pordinates and                                            | equivalent           | C2A—C7A                                | 1                         | 1.381 (12)           | C12C—C13C                                                                 | 1.495 (14)           |
|                              | isotropic di             | splacemen                              | t parameters (Ä                                           | <sup>2</sup> )       | C3A - C4A                              | 1                         | 1.394 (12)           | 07D-C9D<br>08D-C11D                                                       | 1.349 (12)           |
|                              | -                        |                                        |                                                           |                      | C5A-C6A                                | 1                         | 1.369 (12)           | 09DC13D                                                                   | 1.416 (10)           |
|                              | $U_{eq} =$               | = (1/3)と <sub>i</sub> と <sub>j</sub> i | $U_{ij}a_i^*a_j^*\mathbf{a}_i.\mathbf{a}_j.$              |                      | C6A-C7A                                | 1                         | 1.382 (12)           | N3D—C10D                                                                  | 1.396 (14)           |
|                              | x                        | У                                      | z                                                         | $U_{ m eq}$          | $O_{1B}$ $O_{1B}$ $O_{1B}$             | 3                         | 1.203 (16)           | N3D - C12D                                                                | 1.42 (2)             |
| Ca                           | 0.1461 (2)               | -0.0345 (1)                            | 0.22833 (9)                                               | 0.0321 (7)           | 02B-01<br>03B-N1                       | ,<br>B                    | 1.211 (16)           | C8D - C9D                                                                 | 1.429 (17)           |
| 01A<br>02A                   | 0.6693 (7)               | 0.1269(4)<br>0.1481(4)                 | 0.1/43 (4)                                                | 0.056(3)             | O4 <i>B</i> —N1 <i>I</i>               | 8                         | 1.214 (18)           | C10D-C11D                                                                 | 1.352 (16)           |
| 03A                          | 1.2102 (10)              | 0.3777 (6)                             | 0.2248 (5)                                                | 0.090 (4)            | O5 <i>B</i> —N2 <i>I</i>               | 8                         | 1.239 (12)           | C12D—C13D                                                                 | 1.34 (2)             |
| O4A                          | 1.1626 (11)              | 0.5220 (6)                             | 0.2193 (5)                                                | 0.105 (5)            | О8 <i>С—</i> Са-                       | –07 <i>C</i>              | 97.0 (2)             | C7A-C6A-N2A                                                               | 118.9 (8)            |
| O5A                          | 0.3234 (14)              | 0.4696 (6)                             | 0.0640 (5)                                                | 0.098 (5)            | 08 <i>C</i> —Ca-                       | 08D                       | 76.5 (2)             | C2A-C7A-C6A                                                               | 118.9 (7)            |
| 06A<br>N1A                   | 1 1086 (12)              | 0.5864 (6)                             | 0.1064 (6)                                                | 0.111(6)<br>0.067(4) | 08C                                    | -09C<br>-09D              | 110.9(2)<br>170.7(2) | O3B - NIB - O4B<br>O3B - NIB - C4B                                        | 124 (1)              |
| N2A                          | 0.4845 (16)              | 0.5021 (7)                             | 0.0954 (6)                                                | 0.075 (5)            | 08 <i>C</i> —Ca-                       | -07D<br>07D               | 71.2 (3)             | $O_{3}B = N_{1}B = C_{4}B$<br>$O_{4}B = N_{1}B = C_{4}B$                  | 119 (1)              |
| CIA                          | 0.5697 (11)              | 0.1750 (6)                             | 0.1367 (5)                                                | 0.042 (4)            | 07 <i>C</i> Ca-                        |                           | 76.6 (2)             | O5B—N2B—O6B                                                               | 127.5 (9)            |
| C2A                          | 0.6526 (10)              | 0.2772 (5)                             | 0.1396 (4)                                                | 0.039 (3)            | 07 <i>C</i> —Ca-                       | 09C                       | 105.2 (2)            | O5 <i>B</i> —N2 <i>B</i> —C6 <i>B</i>                                     | 116.7 (8)            |
| C3A<br>C4A                   | 0.8406 (11)              | 0.3073 (6)                             | 0.1683(5)<br>0.1732(5)                                    | 0.045(4)<br>0.050(4) | 07CCa-                                 | -09D<br>-07D              | 83.5 (2)             | O6B - N2B - C6B<br>O2B - C1B - O1B                                        | 115.8 (8)            |
| C5A                          | 0.7943 (14)              | 0.4693 (6)                             | 0.1511 (5)                                                | 0.057 (5)            | 07C                                    | -01D<br>09C               | 171.9 (2)            | O2B - C1B - C1B<br>O2B - C1B - C2B                                        | 125 (1)              |
| C6A                          | 0.6097 (12)              | 0.4344 (6)                             | 0.1208 (5)                                                | 0.049 (4)            | O8D—Ca-                                |                           | 94.6 (2)             | O1 <i>B</i> —C1 <i>B</i> —C2 <i>B</i>                                     | 119 (1)              |
| C7A                          | 0.5357(11)               | 0.3402 (6)                             | 0.1143 (5)                                                | 0.049 (4)            | 08 <i>D</i> —Ca-                       | 07 <i>D</i>               | 106.7 (2)            | C3B-C2B-C7B                                                               | 122.7 (9)            |
| O1B<br>O2B                   | 0.9144(12)<br>0.8372(10) | 0.4041 (8)                             | 0.5464(7)<br>0.5333(5)                                    | 0.131(6)<br>0.093(5) | 09C-Ca-                                | -09D<br>-07D              | 73.5 (3)             | $C_{3B} - C_{2B} - C_{1B}$                                                | 118(1)               |
| O3 <i>B</i>                  | 0.4479 (15)              | 0.6292 (6)                             | 0.6000 (6)                                                | 0.121 (6)            | 09D-Ca-                                | -07D                      | 109.4 (2)            | C4B-C3B-C2B                                                               | 117 (1)              |
| O4 <i>B</i>                  | 0.2284 (18)              | 0.5952 (6)                             | 0.6596 (6)                                                | 0.126 (7)            | 09 <i>D</i> —Ca-                       | -N3 <i>D</i>              | 65.5 (2)             | C3B—C4B—C5B                                                               | 124.5 (9)            |
| 05B                          | 0.1224 (9)               | 0.2712 (5)                             | 0.6931 (4)                                                | 0.073(4)             | 08D—Ca-                                | -N3D                      | 65.5 (2)             | C3B-C4B-N1B                                                               | 119 (1)              |
| N1B                          | 0.3656 (18)              | 0.5755 (6)                             | 0.6871(4)<br>0.6294(5)                                    | 0.080(3)<br>0.087(6) | N3C-Ca-                                | N3D<br>N3D                | 166.6 (2)            | $C_{3B}$ $-C_{4B}$ $-N_{1B}$ $C_{6B}$ $-C_{5B}$ $-C_{4B}$                 | 116 (1)              |
| N2B                          | 0.2803 (13)              | 0.2507 (6)                             | 0.6811 (5)                                                | 0.073 (5)            | N3C—Ca-                                | 09D                       | 123.5 (2)            | C7B-C6B-C5B                                                               | 121.3 (8)            |
| C1 <i>B</i>                  | 0.8122 (12)              | 0.3397 (9)                             | 0.5549 (6)                                                | 0.056 (5)            | N3C-Ca-                                | 08D                       | 120.1 (2)            | C7 <i>B</i> —C6 <i>B</i> —N2 <i>B</i>                                     | 121.1 (8)            |
| C2B                          | 0.6489 (12)              | 0.3655 (7)                             | 0.5911 (5)                                                | 0.055 (4)            | N3C-Ca-                                | 07 <i>D</i>               | 101.7 (2)            | C5B—C6B—N2B                                                               | 117.6 (8)            |
| C4B                          | 0.3920(14)<br>0.4354(15) | 0.4575 (7)                             | 0.3949 (0)                                                | 0.001(5)<br>0.060(5) | 090-Ca-<br>090-Ca-                     | -N3C                      | 67.3 (2)             | $C0B \rightarrow C7B \rightarrow C2B$                                     | 118.2 (8)            |
| C5B                          | 0.3304 (13)              | 0.4144 (6)                             | 0.6540 (5)                                                | 0.054 (4)            | 08 <i>C</i> Ca-                        | -N3D                      | 107.5 (2)            | C11 <i>C</i> —O8 <i>C</i> —Ca                                             | 117.3 (5)            |
| C6B                          | 0.3948 (11)              | 0.3233 (6)                             | 0.6502 (5)                                                | 0.044 (4)            | 08 <i>C</i> —Ca-                       | -N3C                      | 64.6 (2)             | C13C—O9C—Ca                                                               | 116.5 (5)            |
| C7B<br>07C                   | 0.5551 (11)              | 0.2980 (6)                             | 0.6195 (5)                                                | 0.045 (4)            | 07C                                    | -N3D                      | 127.3 (2)            | C8C - N3C - C12C                                                          | 110.6 (6)            |
| 08C                          | 0.3200 (8)               | -0.1741(5)                             | 0.2140(4)                                                 | 0.055(3)<br>0.068(3) | 04A-N14                                | -03A                      | 123.2 (9)            | $N_3C \rightarrow C_8C \rightarrow C_9C$                                  | 110.5 (7)            |
| 09 <i>C</i>                  | -0.1851 (8)              | -0.0841 (5)                            | 0.2125 (4)                                                | 0.069 (3)            | 04A—N1A                                |                           | 117.7 (9)            | 07 <i>C</i> C9 <i>C</i> C8 <i>C</i>                                       | 107.4 (7)            |
| N3C                          | 0.0144 (8)               | -0.1909 (4)                            | 0.0922 (4)                                                | 0.043 (3)            | 03AN1A                                 | -C4A                      | 119.1 (8)            | C11C-C10C-N3C                                                             | 111.6 (8)            |
| C8C                          | 0.0098 (12)              | -0.1555(6)                             | 0.0201 (5)                                                | 0.054 (4)            | 064-N24                                | 1                         | 124 (1)              | U8C-C11C-C10C                                                             | 106.5 (9)            |
| C10C                         | 0.1356 (14)              | -0.2705(6)                             | 0.0919 (6)                                                | 0.048 (4)            | 05A—N2A                                | -C6A                      | 117.7 (9)            | 09C-C13C-C12C                                                             | 106.4 (7)            |
|                              |                          |                                        |                                                           |                      | _                                      |                           |                      |                                                                           | /                    |

## $[Ca(C_6H_{15}NO_3)_2](C_7H_3N_2O_6)_2$

| 125.6 (8)   | C9D-07D-Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.9 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 116.7 (8)   | C11D-08D-Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120.3 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 117.7 (6)   | C13D-09D-Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 123.7 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 120.2 (8)   | C10D-N3D-C12D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 120.7 (7)   | C10D-N3D-C8D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 119.1 (7)   | C12D-N3D-C8D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 112 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 117.8 (8)   | C9D—C8D—N3D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 118.3 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 124.0 (8)   | 07 <i>D</i> C9 <i>D</i> C8 <i>D</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 114 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 118.7 (8)   | C11D—C10D—N3D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 125 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 117.3 (8)   | C10DC11DO8D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 113.0 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 115.6 (8)   | C13DC12DN3D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 125 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 123.4 (8)   | C12D-C13DO9D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 114.1 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 117.7 (8)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| N3C-C12C-C1 | 3C 159.5 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3C-C12C-C13 | C -74.9 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3C-C10C-C11 | C 149.5 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| N3C-C8C-C9C | -79.4 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| N3C-C8C-C9C | 2 156.3 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| N3C-C10C-C1 | 1C -86.1 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8C—C9C—O7C  | -59.7 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 10C-C11C-O8 | C -57.7 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12C-C13C-09 | <i>−</i> 63.8 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| N3D-C12D-C  | 13D 99.6 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3D-C12D-C13 | -139.5 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3D-C10D-C11 | 1D 109.0 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| N3D-C8D-C9  | D -136.7 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| N3D-C8D-C91 | D 101.3 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| N3D-C10D-C  | 11D - 128.4 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8D-C9D-07D  | 37.1 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10D-C11D-O  | BD 28.7 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12D-C13D-O  | 9D 23 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | 125.6 (8)<br>116.7 (8)<br>117.7 (6)<br>120.2 (8)<br>120.7 (7)<br>119.1 (7)<br>117.8 (8)<br>124.0 (8)<br>117.3 (8)<br>117.3 (8)<br>117.3 (8)<br>115.6 (8)<br>123.4 (8)<br>117.7 (8)<br>V3C-C12C-C13<br>3C-C12C-C13<br>3C-C10C-C11<br>8C-C9C-07C<br>10C-C11C-08<br>12C-C13C-05<br>V3D-C12D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10D-C13<br>3D-C10 | 125.6 (8) $C9D-O7D-Ca$ 116.7 (8) $C11D-O8D-Ca$ 117.7 (6) $C13D-O9D-Ca$ 120.2 (8) $C10D-N3D-C12D$ 120.7 (7) $C10D-N3D-C8D$ 119.1 (7) $C12D-N3D-C8D$ 117.8 (8) $C9D-C8D-N3D$ 117.8 (8) $C9D-C8D-N3D$ 117.8 (8) $C10D-C10D-N3D$ 117.3 (8) $C10D-C10D-N3D$ 117.3 (8) $C10D-C11D-O8D$ 115.6 (8) $C12D-C13D-O9D$ 117.7 (8)       V32C-C12C-C13C         V32C-C12C-C13C       159.5 (         3C-C12C-C13C       159.5 (         3C-C12C-C13C       -74.9 (         3C-C12C-C13C       -74.9 (         3C-C12C-C13C       -74.9 (         3C-C12C-C13C       -74.9 (         3C-C12C-C11C       -48.1 (         80C-C9C       -56.3 (         80C-C12D-C13D       -99.6 (         3D-C10D-C11D       -090.0 (         3D-C12D-C13D       -63.8 (         3D-C12D-C13D       -913.6 (         3D-C12D-C13D       -136.7 (         3D-C10D-C11D       109.0 (         N3D-C8D-C9D       -136.7 (         N3 |

Table 3. Hydrogen-bonding geometry (Å, °)

| $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$                            | $D - H \cdots A$                                                                                                                                                                            |
|-------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.89                    | 2.661 (9)                                          | 155                                                                                                                                                                                         |
| 1.66                    | 2.695 (9)                                          | 151                                                                                                                                                                                         |
| 1.78                    | 2.704 (8)                                          | 163                                                                                                                                                                                         |
| 1.60                    | 2.68 (1)                                           | 166                                                                                                                                                                                         |
| 1.72                    | 2.83 (1)                                           | 164                                                                                                                                                                                         |
| 1.73                    | 2.684 (8)                                          | 159                                                                                                                                                                                         |
|                         | HA<br>1.89<br>1.66<br>1.78<br>1.60<br>1.72<br>1.73 | $\begin{array}{cccc} H \cdots A & D \cdots A \\ 1.89 & 2.661 & (9) \\ 1.66 & 2.695 & (9) \\ 1.78 & 2.704 & (8) \\ 1.60 & 2.68 & (1) \\ 1.72 & 2.83 & (1) \\ 1.73 & 2.684 & (8) \end{array}$ |

Symmetry codes: (i) x - 1, y, z; (ii) -x, -y, 1 - z; (iii) 1 - x, -y, 1 - z.

All H atoms were fixed geometrically except for the hydroxy H atoms which were located from a difference Fourier map. Weights were applied empirically so as to give no trends in  $\langle w\Delta^2 F \rangle$  versus  $\langle F_o \rangle$  or  $\langle \sin\theta/\lambda \rangle$ , using PESOS (Martinez-Ripoll & Cano, 1975).

Data collection: Philips PW1100 software. Cell refinement: LSUCRE (Appleman, 1995). Data reduction: Xtal3.2 (Hall, Flack & Stewart, 1994). Program(s) used to solve structure: MULTAN80 (Main et al., 1980). Program(s) used to refine structure: Xtal3.2. Molecular graphics: Xtal3.2. Software used, to prepare material for publication: Xtal3.2.

GH is thankful to the Ministry of Science and Education, Spain, for the award of a Post-Doctoral Fellowship.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: NA1201). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

## References

Appleman, D. E. (1995). US Geological Survey, Washington, DC, USA. Unpublished results.

Cradwick, P. D. & Poonia, N. S. (1977). Acta Cryst. B33, 197-199.

©1996 International Union of Crystallography Printed in Great Britain – all rights reserved

- Fenton, D. E. (1987). Comprehensive Coordination Chemistry, Vol. 3, pp. 1–79.
- Hall, S. R., Flack, H. D. & Stewart, J. M. (1994). Editors. *Xtal3.2 Reference Manual*. Universities of Western Australia, Australia, Geneva, Switzerland, and Maryland, USA.
- Hundal, G., Martinez-Ripoll, M., Hundal, M. S. & Poonia, N. S. (1995). Acta Cryst. C51, 1788-1791.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Kanters, J. A., Harder, S. & Poonia, N. S. (1987). Acta Cryst. C43, 1042-1045.
- Kanters, J. A., Smeets, W. J. J., Venkatasubramanian, K. & Poonia, N. S. (1984). Acta Cryst. C40, 1701–1704.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Universities of York, England, and Louvain, Belgium.
- Martinez-Ripoll, M. & Cano, F. H. (1975). PESOS. Instituto Rocasolano CSIC, Madrid, Spain.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Poonia, N. S. & Bajaj, A. V. (1979). Chem. Rev. 79, 389-444.
- Voegele, J. C., Fischer, J. & Weiss, R. (1974a). Acta Cryst. B30, 62-65.
- Voegele, J. C., Fischer, J. & Weiss, R. (1974b). Acta Cryst. B30, 66-69.
- Voegele, J. C., Thierry, J. C. & Weiss, R. (1974). Acta Cryst. B30, 70–75.

Acta Cryst. (1996). C52, 792-795

# $\{Ca(OH_2)_3[Ca(DOTA)].7.7H_2O\}_n$

OREN P. ANDERSON<sup>a</sup> AND JOSEPH H. REIBENSPIES<sup>b</sup>

<sup>a</sup>Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA, and <sup>b</sup>Department of Chemistry, Texas A & M University, College Station, Texas 77843, USA. E-mail: reibenspies@chemvx.tamu.edu

(Received 24 May 1995; accepted 9 November 1995)

#### Abstract

The octadentate ligand H<sub>4</sub>DOTA (H<sub>4</sub>DOTA = 1,4,7,10tetraazacyclododecane-N, N', N'', N'''-tetraacetic acid) forms the most stable calcium complexes known. The overall solid-state structure of the title complex {poly[triaqua- $\mu$ -(1,4,7,10-tetraazacyclododecane-N, N', N'', N'''-tetraacetato)-dicalcium 7.7-hydrate], [Ca<sub>2</sub>-(C<sub>16</sub>H<sub>24</sub>N<sub>4</sub>O<sub>8</sub>)(H<sub>2</sub>O)<sub>3</sub>].7.7H<sub>2</sub>O} contains two independent eight-coordinate Ca<sup>2+</sup> ions on a twofold crystallographic axis with the Ca<sup>2+</sup> ions bound to four of the eight O atoms [mean Ca—O = 2.45 (3) Å] and the four N atoms [mean Ca—N = 2.59 (2) Å] of the DOTA ligand. The coordination geometry of the Ca atom encapsulated by the DOTA ligand is distorted square antiprismatic. Carboxylate bridges link [Ca(DOTA)]<sup>2-</sup>